Deloitte.

Deloitte Sustainability France

LE RECYCLAGE CHIMIQUE AU SERVICE D'UNE PLUS GRANDE CIRCULARITÉ DES PLASTIQUES?

(PROJET RECORD)

MAKING AN IMPACT THAT

Les déchets plastiques: défis et opportunités de ces nouvelles voies de recyclage

LES PLASTIQUES RECYCLÉS CHIMIQUEMENT COMME SOURCE DE CARBONE

Le changement de matière première : des fossiles vers de nouvelles sources

Biomasse

Crédits : Depositphotos

Voies partant du CO₂

Déchets plastiques

LES PLASTIQUES RECYCLÉS CHIMIQUEMENT COMME SOURCE DE CARBONE

Le recyclage chimique au service d'une plus grande circularité des plastiques ? (Projet RECORD) Les déchets plastiques : défis et opportunités de ces nouvelles voies de recyclage

Crédits : Depositphotos

Deloitte Sustainability France

Sources de carbone pour les grands intermédiaires de la chimie organique : NOUVELLES APPROCHES

PRÉSENTATION DE LA MÉTHODOLOGIE

Objectif de l'étude

Comprendre les différentes technologies existantes de recyclage chimique et physico-chimique des déchets plastiques, leurs potentiels et leurs limites.

Périmètre thématique de l'étude

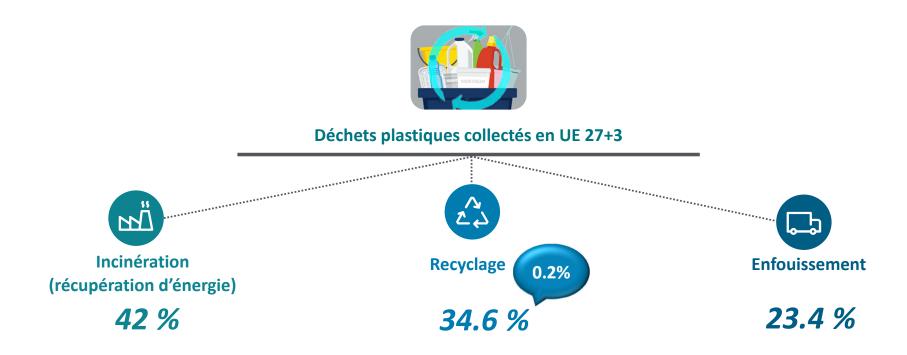
- Traitement chimique, dissolution et traitement thermique
- Filières "du plastique au plastique"

Périmètre géographique de l'étude

- Portée géographique mondiale
- Réglementation: Focus sur les États-Unis, Europe et Japon

Revue de littérature

- Revue de données publiques: rapports, publications scientifiques, etc.
- Plus de 50 développeurs de technologies étudiés


Consultation d'experts

- Panel d'experts
 européens et américains
 (ONG, organismes
 gouvernementaux,
 universités, marques,
 acteurs de l'industrie
 chimique)
- 5 sessions de travail

Consolidation des enseignements

- Rapport
- Synthèse

QUELQUES CHIFFRES CLÉS SUR LE RECYCLAGE DES PLASTIQUES

Note: Recyclage: dont 0.2% via recyclage chimique
Sources: Plastics Europe (Plastics The fact 2021 – les données présentées sont des estimations : extrapolation des données 2019 pour 2020. Périmètre UE 27+3

RECYCLAGE DES PLASTIQUES

Recyclage mécanique

Recyclage chimique et physico-chimique

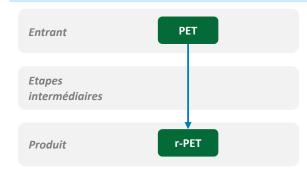
• Flux homogène de PET, PP, PE, PVC, ou PS.

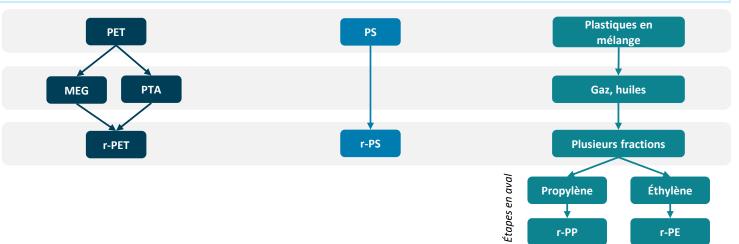
Produit

Polymères (le type de polymère obtenu est déterminé par le matériau entrant).

• Flux homogène de PET, PU, PA, PLA, PC, • Flux homogène de PVC, PS, PP, ou • Déchets plastiques en mélange ou PHA, ou PEF.

Dépolymérisation chimique


- Monomères (le type de monomère obtenu est déterminé par le polymère entrant).


Dissolution

- Polymères (le type de polymère obtenu est déterminé par le polymère entrant).
- flux homogène (ex: PS)

Traitement thermique

- Huiles et gaz pour les déchets en mélange
- Monomères dans certains cas (ex: flux de PS)

Échelle commerciale En développement

DES TECHNOLOGIES PROMETTEUSES AVEC UN FORT DYNAMISME SUR LE MARCHÉ

Gisements

- Plastiques en mélange difficilement recyclables
- Flux homogène de polymères (ex: PET, PS)

Produits

- Production de matériau recyclé de grande qualité
- Capacité à produire des matériaux aptes au contact alimentaire

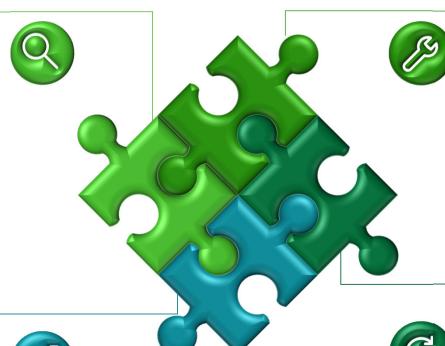
plastique 🝃

Capacités à 2025: 5 000kt/y*

La France accueille deux projets **EASTMAN** géants de recyclage chimique du

Citeo, Total, Recycling Technologies, Mars et Nestlé s'associent pour développer une filière de recyclage chimique des plastiques en France

*Données estimées sur la base des annonces faites par les développeurs des technologies étudiés. Les résultats peuvent donc ne pas être entièrement représentatifs de la réalité


DE L'ÉCHELLE LABORATOIRE À COMMERCIALE: DE MULTIPLES DÉFIS À RELEVER

QUELLES SONT LES PERFORMANCES TECHNIQUES DE CES TECHNOLOGIES ?

Volume et qualité du gisement

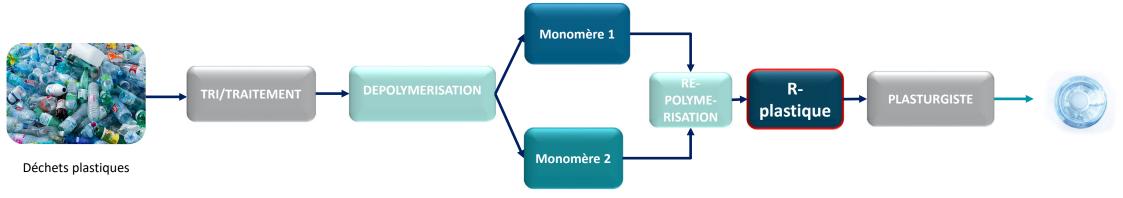
- Accès à un gisement en volume et qualité suffisants
- Aucune technologie capable de traiter tous les types de gisements → connaître la composition exacte de la matière première utilisée pour identifier le type de technologie à employer.

Préparation du gisement

- De nombreuses communications de développeurs affirmant que leur procédé ne nécessite pas de préparation du gisement.
- Retour des experts: préparation des gisements et élimination des impuretés nécessaires (impact sur le rendement, entre autres)

Niveau de maturité des procédés de recyclage chimique et physico-chimique

- Niveau de maturité variable selon les familles de technologies
- Maturité à évaluer au cas par cas pour chaque technologie
- Majorité de technologies en cours de développement


Nature et qualité des produits

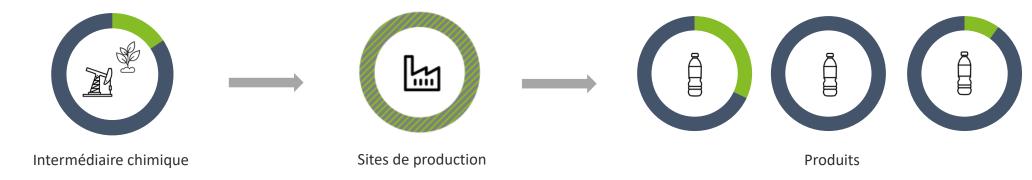
- Impuretés pouvant représenter un problème pour les applications en aval (dont substances héritées)
- Elimination des impuretés en amont mais en aval également si nécessaire (purification supplémentaire parfois requise)
- Selon les technologies, étapes de conversion en aval nécessaires pour produire un polymère recyclé (ex: repolymérisation des monomères).

9

LES CHAÎNES DE VALEUR SONT-ELLES DÉJÀ EN PLACE ET MATURES ? (1/2)

La construction de la chaîne de valeur, de l'approvisionnement en déchets à l'achat des matériaux recyclés, est essentielle pour soutenir le développement des technologies.

Exemples d'acteurs soutenant le développement des technologies de recyclage chimique et physico-chimique :



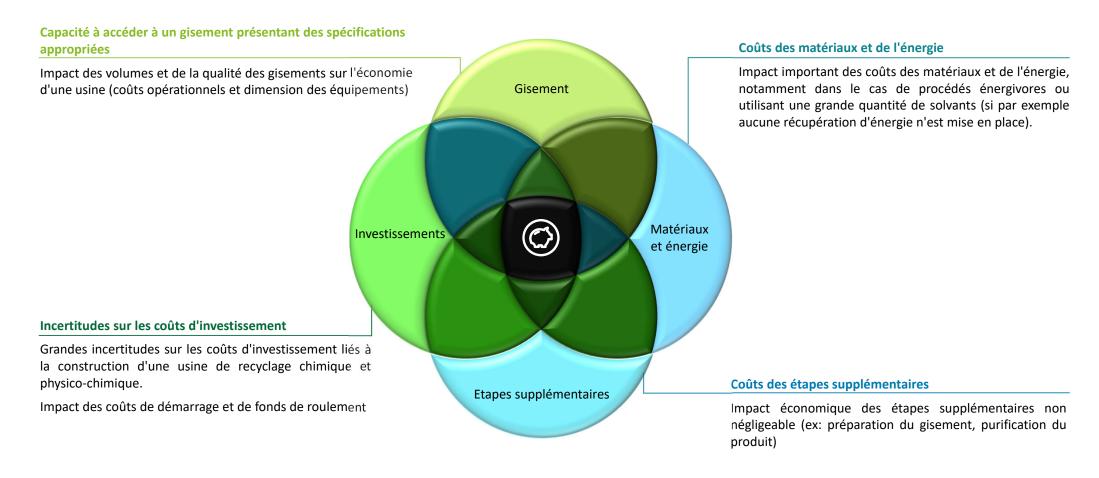
10

LES CHAÎNES DE VALEUR SONT-ELLES DÉJÀ EN PLACE ET MATURES ? (2/2)

Dans la mesure où les manufacturiers se lancent dans la production de matériaux recyclés chimiquement, il y a régulièrement la nécessité **d'utiliser des infrastructures déjà existantes** qui utilisent par ailleurs des matériaux vierges issus de ressources fossiles. Cela amène à une « dilution » des produits recyclés chimiquement avec des matières vierges fossiles.

Une approche mass balance implique qu'un certain contenu recyclé chimiquement soit incorporé dans des produits.

Légende


- Contenu recyclé
- Contenu issu de ressources fossiles

Exemples déjà connus dans d'autres secteurs:

QU'EN EST-IL DE LA PERFORMANCE ÉCONOMIQUE DE CES TECHNOLOGIES ?

CE QU'IL RESTE À CREUSER/SUIVRE

Performance économique

Evolution de la réglementation

Performance environnementale

Evolution de la demande

CONCLUSION – DES TECHNOLOGIES PROMETTEUSES AVEC DES INCERTITUDES À LEVER AFIN DE PERMETTRE LEUR DÉVELOPPEMENT À L'ÉCHELLE COMMERCIALE

Circularité des plastiques

- Technologies essentielles pour favoriser la circularité des plastiques
- Dynamisme fort, peu de technologies à l'échelle commerciale.

Gisements

Point critique du développement du recyclage chimique (qualité et volumes)

Réglementation

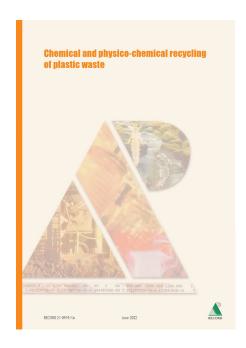
- Réglementations qui ne devront pas entraver le développement de ces technologies.
- Clarification du contexte réglementaire actuel et futur qui devra faciliter les processus de décision en matière d'investissement

Construction de la chaîne de valeur

De l'approvisionnement en déchet à la production du produit final.

Performance économique

- Peu d'informations publiques disponibles sur ce sujet - performance économique encore à démontrer
- Multitude d'acteurs de la chaîne de valeur engagés dans le développement des technologies


Performance environnementale

Solution qui pourrait présenter des bénéfices pour l'environnement mais les performances environnementales des produits recyclés chimiquement restent à démontrer

14

Deloitte.

Retrouvez les livrables : https://record-net.org/catalogue/242

